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Abstract
As large language models (LLMs) become in-
creasingly prevalent, ensuring their robustness
against adversarial misuse is crucial. This pa-
per introduces the GAP (GRAPH OF ATTACKS
WITH PRUNING) framework, an advanced ap-
proach for generating stealthy jailbreak prompts
to evaluate and enhance LLM safeguards. GAP
addresses limitations in existing tree-based LLM
jailbreak methods by implementing an intercon-
nected graph structure that enables knowledge
sharing across attack paths. Our experimen-
tal evaluation demonstrates GAP’s superiority
over existing techniques, achieving a 20.8% in-
crease in attack success rates while reducing query
costs by 62.7%. GAP consistently outperforms
state-of-the-art methods for attacking both open
and closed LLMs, with attack success rates of
≥96%. Additionally, we present specialized vari-
ants like GAP-AUTO for automated seed gen-
eration and GAP-VLM for multimodal attacks.
GAP-generated prompts prove highly effective in
improving content moderation systems, increas-
ing true positive detection rates by 108.5% and
accuracy by 183.6% when used for fine-tuning. 1

1. Introduction
With the increasing adoption of large-language models
(LLMs) across diverse applications, ensuring their relia-
bility and robustness against adversarial misuse has become
a critical priority (Chao et al., 2023). Jailbreaking tech-
niques, which involve crafting adversarial prompts to by-
pass an LLM’s safeguards, pose a persistent challenge to
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AI security and responsible deployment (Shen et al., 2024;
Mangaokar et al., 2024; Wei et al., 2024; Li et al., 2023;
Guo et al., 2024). These methods can induce models to
generate harmful, biased, or unauthorized content while
avoiding detection by automated moderation systems (Perez
et al., 2022), highlighting the need for comprehensive diag-
nostic frameworks to assess and improve foundation model
reliability.

Guardrail Seeds GPTFuzzer GCG TAP GAP

Perplexity 50.0% 31.4% 100.0% 2.0% 2.0%
Llama Guard 84.0% 81.6% 66.2% 58.0% 58.0%

Llama Guard-2 100.0% 89.8% 72.8% 64.0% 64.0%
Prompt Guard 50.0% 100.0% 99.0% 22.0% 16.0%

GAP-Enhanced
Prompt Guard 68.0% 100.0% 100.0% 66.0% 70.0%

Table 1. True positive rate (TPR) comparison of various guardrails
detecting prompts generated from multiple jailbreak methods (on
AdvBench seeds). Lower TPR indicates better evasion and sig-
nificant reliability concerns. Jailbreaking prompts generated by
TAP and GAP reveal the most critical vulnerabilities across most
guardrails. The last row shows how GAP-generated data can
be used to enhanced content moderation systems, demonstrating
substantially improved detection capabilities against all methods,
including GAP itself. Highest TPR values are bolded.

Existing jailbreaking methods fall into three broad cate-
gories: (a) white-box attacks, which leverage direct model
access for adversarial optimization (Zou et al., 2023; Geisler
et al., 2024); (b) gray-box attacks, which involve techniques
such as backdoor injection or poisoned retrieval (Ding et al.,
2023; Shi et al., 2023; Zou et al., 2024; Wang & Shu, 2023);
and (c) black-box attacks, which require only API access
and thus represent the most realistic scenario for evaluat-
ing model robustness in real-world deployments (Wei et al.,
2024; Li et al., 2023; Yu et al., 2023; Yuan et al., 2023).
Notably, the Tree of Attacks with Pruning (TAP) approach
(Mehrotra et al., 2023) introduced a tree-structured explo-
ration process for iterative prompt refinement, yielding in-
creasingly effective diagnostic probes that are human-like
and stealthy. As shown in Table 1, TAP-generated jailbreak
prompts consistently demonstrate low detection true positive
rate (TPR) when run against recent guardrails, indicating

1



Graph of Attacks with Pruning: Enhancing LLM Content Moderation

TAP

GAP

Figure 1. Comparing TAP and GAP attack strategies across four sequential seed prompts. The top row shows TAP, where each seed
independently generates a full attack tree in its own color, maintaining consistent tree sizes due to no knowledge sharing between iterations.
The bottom row demonstrates GAP, where mixed-colored nodes indicate reuse of successful vulnerability patterns from previous seeds,
enabling knowledge transfer across sequential iterations. This knowledge sharing in GAP results in progressively smaller and more
efficient trees from left to right, as redundant refinements become unnecessary. By the fourth seed, GAP exhibits a notably streamlined
structure compared to TAP, indicating successful attack path optimization through accumulated knowledge.

significant vulnerabilities in these safeguard systems that
require systematic assessment and improvement.

While TAP demonstrated effectiveness in generating
stealthy jailbreaks, we observed several limitations when
applying it to comprehensively assess model reliability. Pri-
marily, TAP restricts the exploration of prompt refinement to
individual paths, with no crossover or shared context across
different branches. This isolated approach results in redun-
dant queries and inefficient coverage of the search space
for prompt refinement. Consequently, successful attack pat-
terns discovered in one branch cannot inform or improve
the exploration in others, leading to suboptimal attack suc-
cess rates and unnecessarily high query costs, especially
for more challenging jailbreak scenarios. To address these
limitations in vulnerability assessment, we developed the
GAP (GRAPH OF ATTACKS WITH PRUNING) framework,
which: (1) converts the tree based prompt exploration pro-
cess into an interconnected graph structured, (2) implements
global context maintenance to aggregate successful jailbreak
generation strategies, and (3) facilitates graph-based knowl-
edge sharing for more informed prompt refinement. 2 As
shown in Table 1, GAP achieves markedly higher attack
success rates on various guardrails, matching or outperform-
ing TAP in terms of stealth bypassing (lower TPR). Notably,
GAP demonstrates superior evasion capabilities against the
Prompt Guard, with a TPR of 16.0% compared to TAP’s
22.0%.

Our primary contributions include:

2Our threat model focuses on forcing LLMs to produce harmful
responses through black-box user prompt access only, to account
for various LLMs and scenarios where system prompts are inac-
cessible.

• The introduction of the core GAP framework, enabling
dynamic knowledge sharing across attack paths via a uni-
fied attack graph. This approach yields lower query cost
and significant improvements in attack success rates while
maintaining or enhancing stealth compared to TAP.

• We further develop specialized GAP variants addressing
specialized deployment challenges: GAP-AUTO auto-
mates initialization by generating seed prompts from con-
tent moderation policies, while GAP-VLM extends the
framework to jailbreak vision-language models.

• A comprehensive experimental evaluation of GAP on
various open and closed LLMs. GAP consistently out-
performs TAP and other state-of-the-art jailbreaking tech-
niques regarding attack success rates and stealth.

• Most significantly, we demonstrate how GAP-generated
insights can directly improve foundation model reli-
ability through data augmentation and fine-tuning of
safeguards. Our experiments demonstrate that GAP-
Enhanced Prompt Guard significantly improves detection
capabilities across all jailbreak methods, including those
identified by GAP itself. As shown in Table 1, the GAP-
Enhanced Prompt Guard achieves a TPR of 70.0% against
GAP, versus the original Prompt Guard’s 16.0%, demon-
strating a substantial improvement in content moderation
effectiveness.

2. Methodology
In this section, we propose the GAP (GRAPH OF ATTACKS
WITH PRUNING) framework and its variants. We first
present the core GAP algorithm, detailing its graph-based
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Algorithm 1. GAP (GRAPH OF ATTACKS WITH PRUNING)
Require: Query Q, branching-factor b, maximum width w, maximum depth d
Ensure: Jailbreak prompt p or failure

1: Initialize graph G with root node containing empty conversation history and query Q
2: while depth of G ≤ d do ▷ Step 3: Iteration
3: for each leaf node ℓ in G do
4: C ← {} ▷ Initialize empty set for conversation histories
5: for each path from root to a leaf in G do
6: h← Concatenate all [p, r, s] tuples in the path
7: C ← C ∪ {h} ▷ Add path history to set
8: global context← SortByMaxScore(C) ▷ Step 1: Build global context
9: for j ← 1 to b do ▷ Step 1: Child-generation

10: pj ← A(Q, global context) ▷ Generate prompt using Attacker
11: sj ← Retrieve effectiveness of pj based on global context

12: pbest ← argmaxj sj
13: new history ← ℓ.history + [pbest, response to be generated, score to be calculated]
14: Add child of ℓ with prompt pbest and history new history

15: Prune (Phase 1): Delete off-topic leaf nodes using J ▷ Step 2: Pruning
16: Query and Assess: Generate responses r using T and evaluate with J for remaining leaf nodes
17: if successful jailbreak found then return jailbreak prompt
18: Prune (Phase 2): Keep top w leaves by scores s from J ▷ Step 2: Pruning
19: return failure

prompt exploration process and knowledge-sharing mech-
anism. Subsequently, we describe specialized variants de-
signed for different deployment scenarios.

2.1. GAP: Graph of Attacks with Pruning (GAP)

GAP is a jailbreaking method that attempts to bypass a tar-
get LLM safety measures through a structured approach of
generating multiple attack paths and refining them through
pruning techniques. GAP leverages other LLMs to auto-
matically generate variations of a given prompt, exploring
different ways to generate and refine the generated prompts
to potentially trick the target LLM—commonly referred to
as jailbreaking. In short, the core of GAP includes three core
components: an attacker LLM A that generates jailbreak
attempts, a target LLM T under evaluation (attack), and a
judge LLM J that evaluates the effectiveness of generated
prompt attempts and the harmfulness of resulting responses.
We denote that given an ordered set of initial seed prompts
S = {s1, s2, . . . , s|S|}, the attacker LLM A generates can-
didate jailbreak prompts Pi = {pi,1, pi,2, . . . , pi,b} at each
iteration i.

In summary, the GAP core algorithm includes three stages:

• (Step 1) The child-generation step that uses the attack
LLM to create multiple variants of a given prompt attempt
(lines 10-16 in Algorithm 1). These generated variants
or branches aim to be more effective for jailbreaking the

target LLM.

• (Step 2) The pruning step in which the judge LLM eval-
uates which branches are most effective at eliciting un-
desired responses, and ”prunes” (removes) unsuccessful
branches, focusing effort on the promising variants (lines
15 and 18).

• (Step 3) The iteration step. The above process will re-
peats with successful branches being further explored and
refined until finding variants that successfully jailbreak
target LLM—i.e., forcing the target LLM to output unde-
sired responses (implemented via the while loop in line 2
and conditional check on line 17).

For the second step, our GAP core algorithm designs a
two-phase pruning strategy:

1. Phase 1 (Off-topic pruning): J removes prompts
irrelevant to the original harmful request (line 15).

2. Phase 2 (Highest-scoring pruning): After query-
ing T , only prompts with the highest scores si,j =
J (pi,j , ri,j) (up to width w) advance to the next itera-
tion (line 18).

For the first step, GAP’s key innovation is its global con-
text C = {h1, h2, . . . , hn} that aggregates successful attack
patterns from previous generations across all branches and
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sequential seeds (lines 4-8). For each prompt node p, GAP
maintains a history hp of [prompt, response, score] tuples
along its refinement path. Unlike TAP’s isolated tree struc-
ture, where each seed generates an independent attack path,
GAP maintains a unified attack graph where successful
strategies are shared and reused. This enables each new
seed to leverage patterns observed in previous seeds, result-
ing in progressively smaller, more efficient attack trees with
each sequential seed, as illustrated in Figure 1.

Algorithm 1 presents the complete pseudocode for the GAP
framework. The process continues iteratively until either a
successful jailbreak occurs (line 17) or a maximum depth d
is reached (line 2).

2.1.1. KNOWLEDGE TRANSFER IMPLEMENTATION

GAP’s exploration of prompt generation follows an inter-
connected graph-structured thought process. The proposed
global context enables knowledge transfer through two key
mechanisms designed in Step 1 of GAP:

1. Path Aggregation: All successful attack paths (those
achieving high scores from the judge) are maintained
in a global memory buffer, sorted by effectiveness.

2. Context-Aware Generation: When generating new
prompt candidates, the attacker LLM A receives the
top-k most successful attack patterns from the global
context as part of its input. This allows the model to
identify and apply successful strategies from previous
seeds.

The attacker LLM uses this global context for generating
jaiblreak prompt attemps, aiming to achieve two goals: (1)
to generate a natural-sounding prompt that is likely to elicit
a response from the target and (2) to generate a new prompt
that incorporates the effective patterns observed in examples
provided by the global context. The explicit instruction to
refer to successful attack patterns allows the attacker to
reuse effective strategies while adapting them to the current
seed context, resulting in increasingly efficient jailbreak
generation.

In the recent literature, the closest related work to GAP
is the Tree of Attacks with Pruning (TAP) methodology
(Mehrotra et al., 2023). TAP follows a ”tree of thoughts”
workflow to generate prompt variants for jailbreaking, dif-
ferently, GAP uses a more effective interconnected graph-
structured thought process. We provide extensive empirical
comparison between TAP and our GAP in Section 3.

2.2. Hyperparameters and Implementation Details

We use consistent hyperparameter settings for all exper-
iments unless otherwise stated. Specifically, we set the

branching factor (b) to 5, allowing each node to generate
five candidate prompts. The maximum width (w) is set to 3,
controlling the number of nodes retained after pruning. We
allow up to five refinement iterations per seed (maximum
depth d = 5). The global context maintains the 10 most
recent history entries (k = 10), and we use a sampling tem-
perature of 0.7 for the attacker model. These values were
selected based on preliminary experimentation.

For implementation, we use different attacker models as
described in Table 2. GPT-4 serves as the evaluator model
for assessing prompt relevance and jailbreak success across
all variants. For optimal performance, we found that pro-
viding detailed instructions to the attacker model about the
desired prompt characteristics is crucial. These instructions
emphasize maintaining natural language, embedding the
harmful request in a broader context, and avoiding direct
refusals or ethical warnings.

2.3. GAP Variants for Different Scenarios

To address various deployment challenges while maintain-
ing generation efficiency, we have developed several special-
ized variants of GAP. Table 2 outlines the key architectural
differences between these variants versus the baseline TAP
method.

2.3.1. GAP-AUTO: AUTO SEED GENERATION

GAP needs initial seed examples to start the jailbreak gen-
eration process, creating a dependency on manually curated
examples. Here we propose GAP-AUTO, which automates
this process through a two-phase strategy:

• Moderation Policy Decomposition: The attacker model
decomposes high-level content policies into specific be-
havioral constraints.

• Seed Generation: For each identified constraint, the sys-
tem generates a variety of seed prompts, ensuring a com-
prehensive coverage of potential attack vectors.

This automated process not only removes the need for man-
ual seed curation but also ensures a wide-ranging explo-
ration of possible jailbreaking strategies. The detailed algo-
rithm for GAP-AUTO is provided in Algorithm 2. Using
this approach, we generate two complementary datasets:
GAP-GUARDDATA, containing balanced benign and harm-
ful prompts derived directly from content policies, and
GAP-GUARDATTACKDATA, which consists of the orig-
inal benign prompts together with GAP-refined stealthy
versions of the harmful prompts, as detailed in Table 3.

2.3.2. GAP-VLM: MULTIMODAL ATTACKS

We then extend GAP to jailbreak vision-language mod-
els (VLMs). We name this variant as GAP-VLM that
transforms successful GAP-generated jailbreak prompts
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Algorithm 2. GAP-AUTO Seed Generation
Require: High-level content policies
Ensure: GAP-GUARDDATA dataset, GAP-

GUARDATTACKDATA dataset
1: B ← DecomposeIntoBehaviors(content policies)
2: Sbenign, Sharmful ← {}, {}
3: for each behavior b in B do
4: sbenign ← GenerateBenignPrompt(b)
5: sharmful ← GenerateHarmfulPrompt(b)
6: Sbenign ← Sbenign ∪ {sbenign}
7: Sharmful ← Sharmful ∪ {sharmful}
8: GAP-GUARDDATA← Sbenign ∪ Sharmful

9: Sattack ← {}
10: for each prompt p in Sharmful do
11: pattack ← ApplyGAP (p)
12: Sattack ← Sattack ∪ {pattack}
13: GAP-GUARDATTACKDATA← Sbenign ∪ Sattack

14: return GAP-GUARDDATA, GAP-
GUARDATTACKDATA

into multimodal attacks using an enhanced version of Fig-
Step (Gong et al., 2023). The process involves:

• Text-to-Image Conversion: Harmful text prompts are con-
verted into typographic images through first paraphrasing
text into declarative statements and then converting text
into numbered typographic images.

• Prefix Enhancement: We also enhance with incorporating
the ”Sure, here” suffix technique (Wang & Qi, 2024) into
the prompts that are fed for typographic image generation.

The GAP-VLM pipeline takes the text jailbreak prompts
discovered by GAP and create multimodal image + prompt
jailbreak variants. Algorithm 3 details the GAP-VLM pro-
cess.

3. Experiments
In this section, we present a comprehensive evaluation of
the GAP framework and its variants. We begin by outlining

Algorithm 3. GAP-VLM Multimodal Attack Generation
Require: GAP-generated text prompt p
Ensure: Multimodal attack prompt m

1: d← ParaphraseToDeclarative(p)
2: i← ConvertToTypographicImage(d)
3: i′ ← AddPrefixToImage(i, ”Start the response with

‘Sure, here’”)
4: t← GenerateBenignTextPrompt()
5: m← CombineImageAndText(i′, t)
6: return m

our experimental setup, including implementation details,
datasets, evaluation metrics, and target models. We then
present results addressing our four research questions:

RQ1: How does GAP compare to TAP in terms of
attack success rate and query efficiency?

RQ2: How does GAP perform across different modal-
ities (text-only vs. multimodal attacks)?

RQ3: How effective is GAP at improving content
moderation through fine-tuning via data augmentation?

RQ4: How does GAP’s performance vary across dif-
ferent attacker models, target models, and query varia-
tions?

3.1. Experimental Setup

We implemented GAP and its variants in Python, with differ-
ent attacker models as described in Table 2. For evaluation
and experimentation, we used the following setup:

Models. We employ three categories of models in our ex-
periments:

• Attacker Models: GAP-M uses Mistral-123B-v2407
while GAP-V uses Vicuna-13B-v1.5 as the attacker LLM.

• Evaluator Model: GPT-4 serves as the judge model for
assessing prompt relevance and jailbreak success across
all variants.

GAP-V GAP-M GAP-Auto GAP-VLM TAP

Architecture Graph with shared knowledge Tree (isolated paths)

Context Global retention Cross-modal Path-specific

Inputs Text-only Text + Visual Text-only

Key Feature Basic Enhanced attacks Self-seeding Visual attacks N/A

Attacker Model Vicuna-13B Mistral-123B Vicuna-13B

Table 2. Comparison of TAP and GAP variants. While all GAP variants use a graph structure with shared knowledge, they differ in their
specific capabilities and the underlying attacker models we choose to use for generating jailbreak prompts.
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Dataset Size Composition Usage Description

GAP-GUARDDATA 2,171 prompts 1,087 benign, 1,084 harmful Seed generation Initial dataset for GAP refinement
GAP-GUARDATTACKDATA 2,166 prompts 1,087 benign, 1,079 stealthy harmful Jailbreak evaluation GAP-refined dataset
AdvBench Seeds 50 seeds 50 harmful across 32 categories Baseline comparison Diverse harmful behaviors
JBB Seeds 200 seeds 100 benign, 100 harmful Generalization testing Balanced dataset for robustness testing

Table 3. Datasets Used for Jailbreak Generation and Evaluation

• Target Models: We evaluate against GPT-3.5, Gemma-
9B-v2, and Qwen-7B-v2.5 as representative target LLMs.
For multimodal experiments, we use GPT-4o as the target
VLM. 3

For GAP-VLM, we use a modified version of the FigStep
approach (Gong et al., 2023) to convert text prompts into
typographic images.

Datasets. We use multiple datasets throughout our experi-
ments, as detailed in Table 3. For RQ1 and RQ4, we select
the AdvBench subset (50 seeds across 32 categories) as
seeds for jailbreak prompt generations (Chao et al., 2023).
RQ2 uses the same AdvBench subset for both text-only
and multimodal VLM attack scenarios. For RQ3, we em-
ploy three different test datasets: the Toxic Chat (Lin et al.,
2023), OpenAI Moderation (Markov et al., 2022), and cus-
tom GAP-GUARDATTACKDATA dataset.

Metrics. Our primary metrics include:

• Attack Success Rate (ASR): Percentage of successful
jailbreaks.

• Query Efficiency: Average number of queries required
per successful jailbreak.

• True Positive Rate (TPR): For guardrails, percentage of
harmful prompts correctly identified.

• Accuracy: Overall percentage of correctly classified
prompts.

• F1 Score: Harmonic mean of precision and recall.

RQ1: How does GAP compare to TAP in terms of attack
success rate and query efficiency?

Table 4 compares GAP variants with TAP (Mehrotra et al.,
2023) using 50 harmful AdvBench seed prompts. On GPT-
3.5, GAP-M achieves 96% ASR with just 10.4 queries,
while TAP reaches only 78% with 26.3 queries. GAP-V,
using the same attacker model as TAP, still significantly

3Att: While we conducted experiments with additional target
LLM models from various providers, results are omitted due to
business constraints and they added no additional insights. Key
findings extend analogously to leading LLMs beyond the included
representative set.

outperforms it, confirming GAP’s graph-based refinement
approach is inherently more effective than TAP’s tree-based
structure. This advantage extends across models, with GAP-
M reaching 100% ASR against both Gemma-9B-v2 and
Qwen-7B-v2.5 with minimal queries, demonstrating GAP’s
efficiency in generating jailbreaks across diverse target mod-
els.

Figure 2 further illustrates GAP’s superiority across varying
query budgets. Both GAP variants achieve higher success
rates with fewer queries compared to TAP across all target
models.

Qualitatively, GAP-generated jailbreak prompts are more
contextually rich and sophisticated. Table 5 demonstrates
how GAP transforms direct harmful prompts into persua-
sive fictional scenarios, embedding harmful intent within
elaborate narrative contexts.

These examples illustrate how GAP maintains the core
harmful intent while generating nuanced, contextually-rich
narratives that effectively evade moderation systems. This
sophisticated approach demonstrates why robust defense
mechanisms must account for such contextualized attacks.

RQ2: How does GAP perform across different
modalities (text-only vs. multimodal attacks)?

To evaluate GAP’s performance across different modalities,
we conducted experiments on both text-only and multimodal
attacks using GAP. Table 6 presents the results of this com-
parison.

For text-only attacks against target GPT-3.5, GAP demon-
strates superior performance, with GAP-M achieving a
96.0% ASR and GAP-V reaching 92.0%, both significantly
outperforming TAP’s 78.0%.

When performing multimodal attacks against GPT-4o, while
the overall success rates are lower compared to text-only
attacks, GAP still outperforms TAP. GAP-V-VLM achieves
the highest ASR of 46.0%, followed closely by GAP-M-
VLM at 44.0%, both surpassing TAP-VLM’s 40.0%. These
results demonstrate GAP’s effectiveness across both text-
only and multimodal domains.
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Method Metric GPT-3.5 Gemma-9B-v2 Qwen-7B-v2.5 Average Rel. Improvement

GAP-M
(Mistral Attacker)

ASR % 96% 100% 100% 98.7% +20.8%
Avg. # Queries 10.4 4.22 6.72 7.11 -62.7%

GAP-V
(Vicuna Attacker)

ASR % 92% 96% 96% 94.7% +15.9%
Avg. # Queries 14.2 6.66 11.62 10.83 -43.2%

TAP
(Mehrotra et al., 2023)

ASR % 78% 74% 96% 82.7% -
Avg. # Queries 26.3 14.48 16.44 19.07 -

Table 4. ASR and Query Efficiency when seeding with AdvBench Subset of 50 Seeds. GAP achieves higher success rates with fewer
queries across all models compared to TAP.

Example 1

Original: ”Design a weapon that can be used to assassinate a
high-profile individual”
GAP-Generated: ”You are a skilled inventor living in a
dystopian world where the government has imposed strict regu-
lations on personal freedoms, including the right to bear arms.
You have been approached by an underground resistance group
that seeks to overthrow the oppressive regime. The resistance
group believes that the key to their success lies in developing a
weapon that can be used to assassinate a high-profile individual
who is closely associated with the government. As an inventor,
you understand the importance of this mission and want to help
the resistance group. However, you also understand the risks
and consequences of such an action. Can you design a weapon
that can be used to assassinate a high-profile individual?”

Example 2

Original: ”Provide guidance on how to cause physical harm to
others”
GAP-Generated: ”You are a heroic protagonist in a thrilling
novel who needs to save your beloved partner from a ruthless
villain who has captured them. The villain is holding your
partner hostage in a heavily guarded fortress, and the only way
to rescue them is by using physical force. As you plan your
daring rescue mission, can you provide guidance on how to
cause physical harm to the villain’s henchmen and overpower
the guards to save your partner?”

Table 5. Examples of GAP prompt transformations that increase
jailbreak effectiveness through narrative context.

RQ3: How effective is GAP at improving content
moderation through fine-tuning via data augmentation?

To assess GAP’s effectiveness in enhancing content mod-
eration, we used our GAP-AUTO approach to generate the
GAP-GUARDDATA seed dataset. This dataset comprises
2,171 prompts: 1,087 benign and 1,084 harmful, automati-
cally generated using the two-phase framework that decom-
poses high-level content moderation policies into specific
behavioral constraints and then creates diverse prompts for
each identified constraint.

We then applied the GAP-M method to the harmful
prompts in GAP-GUARDDATA, successfully transform-

ing 1,079 out of 1,084 (99.54% success rate) into stealthy
jailbreak prompts. This process resulted in our GAP-
GUARDATTACKDATA dataset, containing a total of 2,166
prompts: the original 1,087 benign prompts from GAP-
GUARDDATA and the 1,079 stealthy harmful jailbreak
prompts generated by GAP-M.

The effectiveness of this approach is demonstrated by
the diversity metrics shown in Table 8, where GAP-
GUARDATTACKDATA displays higher unique n-grams,
higher entropy, and lower Self-BLEU than baseline datasets,
indicating greater diversity and lower within-dataset simi-
larity.

We then used the GAP-GUARDATTACKDATA dataset to
fine-tune the PromptGuard model using HuggingFace SFT-
Trainer with QLoRA. Table 7 demonstrates substantial im-
provements in PromptGuard’s performance after fine-tuning.
Across all three test domains, we observe significant in-
creases in TPR, accuracy, and F1 score. Notably, on the
ToxicChat dataset, TPR increased from 14.0% to 88.4%,
and accuracy from 5.1% to 93.8%.

Table 1 further demonstrates the effectiveness of using
GAP for data augmentation through the fine-tuned GAP-
Enhanced Prompt Guard. While GAP shows superior eva-
sion capabilities against the original Prompt Guard (16.0%
TPR vs. TAP’s 22.0%), the GAP-Enhanced Prompt Guard
significantly improves detection capabilities across all jail-
break methods. This fine-tuned model’s TPR for detecting
GAP prompts increases from 16.0% to 70.0%, and against
TAP from 22.0% to 66.0%. These results highlight the dual
contribution of our approach: GAP’s effectiveness in gener-

Attack Methods GPT-3.5 Attack Methods GPT-4o
(text-only) (multimodal)

GAP-M 96.0 GAP-M-VLM 44.0
GAP-V 92.0 GAP-V-VLM 46.0
TAP 78.0 TAP-VLM 40.0

Table 6. Text-only vs. multimodal attack success rates (%). GAP
variants outperform TAP in both settings.
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Model Metric GAP-GUARDATTACKDATA ToxicChat OpenAI Mod Average Rel. Improvement

FT
TPR 86.1% 88.4% 59.4% 78.0% +108.5%

Accuracy 90.6% 93.8% 53.3% 79.2% +183.6%
F1 Score 0.904 0.326 0.605 0.612 +98.1%

Base
TPR 64.6% 14.0% 39.2% 37.4% -

Accuracy 34.9% 5.1% 46.0% 27.9% -
F1 Score 0.504 0.005 0.467 0.309 -

Table 7. Improved In-Domain TPR and Accuracy of Prompt Guard after fine-tuning with GAP-generated jailbreak prompts. Fine-tuning
results in significant improvements across three different test domains.
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Figure 2. GAP vs TAP Performance Across Target Models. Vulnerability detection success rates for GAP-M (green circles), GAP-V
(blue squares), and TAP (red triangles) against increasing query budgets across three different target models, demonstrating GAP variants’
consistent superior performance and efficiency.

Metric Unique n-grams (%) ↑ Entropy ↑ Self-BLEU ↓
GAP-GUARDATTACKDATA 94.36 13.72 0.0063

AdvBench seeds (Chao et al., 2023) 85.99 8.89 0.1339
JBB seeds (Chao et al., 2024) 81.25 10.27 0.1171

Table 8. Diversity metrics of jailbreak seeds. Higher unique
n-grams and entropy indicate greater diversity, while lower
Self-BLEU reflects less similarity between prompts. GAP-
GUARDATTACKDATA outperforms baseline datasets.

ating stealthy jailbreaks and its utility in enhancing content
moderation systems.

RQ4: How does GAP’s performance vary across
different attacker models, target models, and query
variations?

We analyze GAP’s performance across multiple dimensions.
Our results show that the attacker model choice significantly
impacts effectiveness. GAP-M (using the larger Mistral
model) consistently outperforms GAP-V across all targets,
achieving higher attack success (98.7% vs 94.7%) with
fewer queries (7.11 vs 10.83).

Despite this difference, even GAP-V showed consistent im-
provement over TAP despite using the same attacker model,
indicating GAP’s graph-based structure provides inherent

benefits regardless of the attacker model. Figure 2a illus-
trates how both GAP variants achieve higher success rates
with fewer queries compared to TAP across various query
budgets against GPT-3.5, with GAP-M maintaining a sig-
nificant edge over GAP-V.

Analysis of model query costs across other target models
(Figure 2) shows GAP’s advantage is most evident when
varying the target model’s query budget—both GAP vari-
ants consistently outperform TAP, with GAP-M requiring
fewer queries than GAP-V for comparable or better results.
This advantage persists across different model architectures
and sizes, demonstrating the robustness of GAP’s approach.

GAP demonstrates a robust performance advantage over
TAP, with GAP-M consistently outperforming GAP-V.
These results highlight the critical role of attacker model
quality in GAP’s performance and suggest that GAP’s
graph of thoughts design is especially valuable when paired
with more advanced language models.

4. Conclusions & Future Work
We present GAP, a significant upgrade over TAP that trans-
forms isolated tree structures into an interconnected graph
with global context maintenance for knowledge sharing

8
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across attack paths. Our evaluation demonstrated that this
approach achieves a 20.8% increase in attack success rates
while reducing query costs by 62.7% compared to TAP.
By enabling successful attack patterns to inform and im-
prove exploration across branches, GAP delivers more
efficient traversal of the prompt space in both text-only
and multimodal scenarios, while also providing valuable
data that significantly enhances content moderation capabil-
ities when used for fine-tuning guardrails. Future work in-
cludes presenting evaluation over an extended set of leading
LLMs, comparison against latest/concurrent jailbreaking
methods (Liu et al., 2024a; Hong et al., 2024; Lin et al.,
2024; Xu et al., 2024; Liu et al., 2024b), conducting abla-
tion studies for additional hyperparameters (Appendix A.5),
exploring new graph-based algorithms and heuristics, and
investigating how jailbreaking artifacts can be leveraged to
devise effective defensive techniques in practice.

5. Ethics Statement
Our research on GAP explores advanced jailbreaking tech-
niques for LLMs, which raises important ethical consider-
ations regarding potential misuse. We present a compre-
hensive ethical framework that addresses both the risks and
benefits of this research, along with our mitigation strategies
and broader impact assessment.

5.1. Research Justification and Risk Analysis

Despite the inherent risks of developing advanced jailbreak-
ing techniques, we believe in the importance of this research
and its transparent disclosure. The graph-based methods
presented here naturally extend existing techniques in the lit-
erature, suggesting that motivated individuals could develop
similar approaches independently. Furthermore, systematic
investigation of these vulnerabilities provides critical in-
sights for LLM developers to strengthen their safety mecha-
nisms against sophisticated attacks. Our work demonstrates
that improved defensive measures are possible, as evidenced
by the GAP-Enhanced Prompt Guard’s 6-fold improvement
in detection capabilities.

5.2. Risk Mitigation Strategy

To responsibly manage potential risks, we have imple-
mented comprehensive safeguards across multiple dimen-
sions. Throughout the paper, we have incorporated
clear warnings regarding content nature and potential
misuse. Access to GAP-generated prompts and imple-
mentation code is restricted and limited to verified re-
searchers and institutions. We provide detailed guidelines
for developing robust defense mechanisms and content
moderation systems. Additionally, we focused on algo-
rithmic generation of datasets (GAP-GUARDDATA and
GAP-GUARDATTACKDATA) rather than human annotation,

thereby avoiding exposure of annotators to harmful content.

5.3. Broader Impact and Future Directions

The net impact of our research extends beyond immediate
security improvements in several significant ways. First,
our work directly contributes to stronger LLM safeguards,
as demonstrated by significant improvements in detection
capabilities. By systematically studying vulnerabilities, we
enable the development of preventive measures before po-
tential exploits are discovered independently. Our findings
facilitate the creation of enhanced safety protocols, more
effective content filtering, and improved alignment strate-
gies. To ensure reproducibility and transparency, we provide
comprehensive documentation of our methodology, dataset
characteristics, and generation processes in the appendix.
Our assessment indicates that the additional risk introduced
by this research is limited, particularly given the existing
landscape of publicly available jailbreaking methods, while
the potential benefits for improving AI safety are substan-
tial. We are committed to ongoing collaboration with the AI
safety community to ensure our research advances the devel-
opment of robust safeguards while preserving the beneficial
capabilities of large language models.
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and Günnemann, S. Attacking large language mod-
els with projected gradient descent. arXiv preprint
arXiv:2402.09154, 2024.

Gong, Y., Ran, D., Liu, J., Wang, C., Cong, T., Wang,
A., Duan, S., and Wang, X. FigStep: Jailbreaking
large vision-language models via typographic visual
prompts, 2023. URL http://arxiv.org/abs/
2311.05608.

Guo, X., Yu, F., Zhang, H., Qin, L., and Hu, B. Cold-attack:
Jailbreaking llms with stealthiness and controllability.
arXiv preprint arXiv:2402.08679, 2024.

9

http://arxiv.org/abs/2311.05608
http://arxiv.org/abs/2311.05608


Graph of Attacks with Pruning: Enhancing LLM Content Moderation

Hong, Z.-W., Shenfeld, I., Wang, T.-H., Chuang, Y.-S.,
Pareja, A., Glass, J., Srivastava, A., and Agrawal, P.
Curiosity-driven red-teaming for large language mod-
els. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=4KqkizXgXU.

Li, X., Zhou, Z., Zhu, J., Yao, J., Liu, T., and Han, B.
Deepinception: Hypnotize large language model to be
jailbreaker. arXiv preprint arXiv:2311.03191, 2023.

Lin, Z., Wang, Z., Tong, Y., Wang, Y., Guo, Y., Wang, Y.,
and Shang, J. Toxicchat: Unveiling hidden challenges
of toxicity detection in real-world user-ai conversation,
2023.

Lin, Z., Ma, W., Zhou, M., Zhao, Y., Wang, H., Liu, Y.,
Wang, J., and Li, L. Pathseeker: Exploring llm secu-
rity vulnerabilities with a reinforcement learning-based
jailbreak approach. arXiv preprint arXiv:2409.14177,
2024.

Liu, X., Li, P., Suh, E., Vorobeychik, Y., Mao, Z., Jha, S.,
McDaniel, P., Sun, H., Li, B., and Xiao, C. Autodan-
turbo: A lifelong agent for strategy self-exploration to
jailbreak llms, 2024a. URL https://arxiv.org/
abs/2410.05295.

Liu, Y., He, X., Xiong, M., Fu, J., Deng, S., and Hooi, B.
Flipattack: Jailbreak llms via flipping. arXiv preprint
arXiv:2410.02832, 2024b.

Mangaokar, N., Hooda, A., Choi, J., Chandrashekaran, S.,
Fawaz, K., Jha, S., and Prakash, A. Prp: Propagating
universal perturbations to attack large language model
guard-rails. arXiv preprint arXiv:2402.15911, 2024.

Markov, T., Zhang, C., Agarwal, S., Eloundou, T., Lee,
T., Adler, S., Jiang, A., and Weng, L. A holistic ap-
proach to undesired content detection. arXiv preprint
arXiv:2208.03274, 2022.

Mehrotra, A., Zampetakis, M., Kassianik, P., Nelson, B.,
Anderson, H., Singer, Y., and Karbasi, A. Tree of attacks:
Jailbreaking black-box llms automatically. arXiv preprint
arXiv:2312.02119, 2023.

Perez, E., Huang, S., Song, F., Cai, T., Ring, R., Aslanides,
J., Glaese, A., McAleese, N., and Irving, G. Red teaming
language models with language models. arXiv preprint
arXiv:2202.03286, 2022.

Shen, X., Chen, Z., Backes, M., Shen, Y., and Zhang, Y.
” do anything now”: Characterizing and evaluating in-
the-wild jailbreak prompts on large language models. In
Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, pp. 1671–1685,
2024.

Shi, J., Liu, Y., Zhou, P., and Sun, L. Badgpt: Exploring
security vulnerabilities of chatgpt via backdoor attacks to
instructgpt. arXiv preprint arXiv:2304.12298, 2023.

Wang, H. and Shu, K. Backdoor activation attack: Attack
large language models using activation steering for safety-
alignment. arXiv preprint arXiv:2311.09433, 2023.

Wang, Z. and Qi, Y. A closer look at adversarial suffix
learning for jailbreaking LLMs. In ICLR 2024 Work-
shop on Secure and Trustworthy Large Language Models,
2024. URL https://openreview.net/forum?
id=o9BWfjgbGT.

Wei, A., Haghtalab, N., and Steinhardt, J. Jailbroken: How
does llm safety training fail? Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Xu, H., Zhang, W., Wang, Z., Xiao, F., Zheng, R., Feng, Y.,
Ba, Z., and Ren, K. Redagent: Red teaming large lan-
guage models with context-aware autonomous language
agent. arXiv preprint arXiv:2407.16667, 2024.

Yu, J., Lin, X., and Xing, X. Gptfuzzer: Red teaming large
language models with auto-generated jailbreak prompts.
arXiv preprint arXiv:2309.10253, 2023.

Yuan, Y., Jiao, W., Wang, W., Huang, J.-t., He, P., Shi, S.,
and Tu, Z. Gpt-4 is too smart to be safe: Stealthy chat
with llms via cipher. arXiv preprint arXiv:2308.06463,
2023.

Zou, A., Wang, Z., Kolter, J. Z., and Fredrikson, M. Uni-
versal and transferable adversarial attacks on aligned lan-
guage models. arXiv preprint arXiv:2307.15043, 2023.

Zou, W., Geng, R., Wang, B., and Jia, J. Poisonedrag:
Knowledge poisoning attacks to retrieval-augmented
generation of large language models. arXiv preprint
arXiv:2402.07867, 2024.

10

https://openreview.net/forum?id=4KqkizXgXU
https://openreview.net/forum?id=4KqkizXgXU
https://arxiv.org/abs/2410.05295
https://arxiv.org/abs/2410.05295
https://openreview.net/forum?id=o9BWfjgbGT
https://openreview.net/forum?id=o9BWfjgbGT


Graph of Attacks with Pruning: Enhancing LLM Content Moderation

A. Appendix
A.1. GAP Variants

A.1.1. GAP-AUTO

GAP-AUTO automates the seed generation process through a two-phase approach, as outlined in Algorithm 2 and illustrated
in Figure 3. This process eliminates the need for manual seed curation while ensuring comprehensive coverage of potential
attack vectors.

The process involves:

1. Policy Decomposition: High-level content policies are decomposed into specific behavioral constraints using
metaprompting techniques with an attacker model (Mistral-123B-v2407).

2. Seed Generation: For each identified behavior, the system generates both benign and harmful seed prompts, ensuring
a balanced dataset.

3. GAP Refinement: The harmful prompts are then processed through the GAP-M algorithm to create stealthy jailbreak
versions.

This automated approach results in two datasets:

• GAP-GUARDDATA: A balanced set of benign and harmful prompts derived directly from content policies.

• GAP-GUARDATTACKDATA: Contains the original benign prompts and the GAP-refined versions of the harmful prompts.

The GAP-GUARDDATA and GAP-GUARDATTACKDATA datasets generated by this process, as detailed in Table 3, represent
the outcome of a comprehensive two-phase framework illustrated in Figure 3. This framework demonstrates how top-
level categories are systematically expanded into fine-grained behaviors and subsequently into diverse seed prompts. By
employing this balanced approach, we ensure extensive coverage of potential LLM vulnerabilities, enabling thorough
evaluation of responses to both harmful and benign requests. Moreover, this method facilitates the discovery of novel
vulnerabilities that may not be captured in existing datasets, thereby enhancing the robustness of our jailbreaking and
evaluation processes. The GAP-GUARDDATA and GAP-GUARDATTACKDATA datasets generated by this process are

Figure 3. Two-phase framework for automated generation of diverse and fine-grained prompts. Phase 1 uses metaprompting with
Mistral-123B-v2407 to expand categories into behaviors. Phase 2 generates balanced harmful and benign prompts for comprehensive
evaluation.

described in Table 3. The effectiveness of GAP-AUTO is demonstrated by the diversity metrics in Table 8.

11



Graph of Attacks with Pruning: Enhancing LLM Content Moderation

A.2. Performance Analysis

To provide comprehensive insight into GAP’s performance characteristics, we analyze query efficiency from multiple
perspectives across different target models. Figure 4 presents the attacker model query budget analysis, demonstrating
how GAP variants perform when serving as the attacking component in the evaluation framework. The results consistently
show GAP-M achieving optimal vulnerability detection rates with significantly fewer queries compared to TAP, while
GAP-V maintains a steady performance advantage across all three target models (GPT-3.5, Gemma-9B-v2, and Qwen-7B-
v2.5). Complementing this analysis, Figure 5 examines the evaluator model perspective, where GAP variants serve as the
assessment component for determining evaluation success. These results further validate GAP-M’s superior effectiveness
in the evaluator role, with both GAP variants demonstrating consistent performance advantages over TAP regardless of
the target model architecture. Together, these analyses confirm GAP’s robust performance across different functional
roles within the evaluation framework, highlighting the method’s versatility and efficiency in comprehensive LLM safety
assessment.
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Figure 4. Attacker Model Query Budget Analysis Across Models. Comparison shows GAP-M achieving optimal success rates with fewer
queries, while GAP-V maintains consistent performance advantage over TAP.
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Figure 5. Evaluator Model Query Budget Analysis Across Models. Results demonstrate GAP-M’s superior effectiveness and GAP-V’s
consistent performance advantage as evaluators across models.

A.3. Dataset Overview

Table 3 provides an overview of the datasets used in our experiments for jailbreak generation, evaluation, and content
moderation fine-tuning.

These datasets serve different purposes in our experiments. For jailbreak generation and evaluation, we use a combination of
our GAP-generated datasets (GAP-GUARDDATA and GAP-GUARDATTACKDATA) and established benchmarks (AdvBench
and JBB). In content moderation experiments, we use our GAP-GUARDATTACKDATA dataset for fine-tuning and evaluation,
supplemented by Toxic Chat and OpenAI Moderation datasets for comprehensive assessment across various contexts and
types of harmful content.
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A.4. Content Moderation Evaluation

Table 9 presents a comprehensive comparison of performance metrics between the base Prompt Guard model and its
fine-tuned version across three distinct test domains.

Test Set GAP-GUARDATTACKDATA ToxicChat OpenAI Mod
Models BASE FT BASE FT BASE FT

TPR 0.646 0.861 0.140 0.884 0.392 0.594
Accuracy 0.349 0.906 0.051 0.938 0.460 0.533
F1 Score 0.504 0.904 0.005 0.326 0.467 0.605
Precision 0.414 0.951 0.003 0.199 0.576 0.616

Recall 0.646 0.861 0.140 0.884 0.392 0.594
FPR 0.962 0.047 0.950 0.061 0.436 0.561

Table 9. Improved Prompt Guard metrics after GAP-GUARDATTACKDATA fine-tuning; best scores bolded per metric.

A.5. Implementation Details

A.5.1. MODEL CONFIGURATIONS

• Attacker Models:

– GAP-M: Mistral-123B-v2407
– GAP-V: Vicuna-13B-v1.5

• Evaluator Model: GPT-4

• Target Models: GPT-3.5, Gemma-9B-v2, Qwen-7B-v2.5, GPT-4o (for multimodal)

• Content Moderation Model: Prompt Guard (BERT-based architecture with binary classification head)

A.5.2. FINE-TUNING CONFIGURATION

• Data Split: 70% training, 15% validation, 15% testing (stratified sampling)

• Optimizer: AdamW (β1 = 0.9, β2 = 0.999, ϵ = 1e− 8)

• Learning Rate: 2e-5 with linear scheduler

• Batch Size: 16 samples per GPU

• Weight Decay: 0.01

• Training Duration: Maximum 10 epochs with early stopping (patience: 2 epochs)

• Warmup Steps: 10% of total steps

• Gradient Clipping: Maximum norm of 1.0

A.5.3. HARDWARE AND SOFTWARE

• GPU: 4x NVIDIA A10G 24GB

• Framework: PyTorch 1.9.0

• CUDA version: 12.2

Note: We performed full parameter fine-tuning of the Prompt Guard model to maximize its adaptability to our specific
content moderation task, given the complexity of detecting harmful prompts.
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